Isoperimetric inequalities for nilpotent groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric inequalities for nilpotent groups

We prove that every finitely generated nilpotent group of class c admits a polynomial isoperimetric function of degree c+1 and a linear upper bound on its filling length function. 1991 Mathematics Subject Classification: 20F05, 20F32, 57M07

متن کامل

Isoperimetric inequalities for soluble groups

We approach the question of which soluble groups are automatic. We describe a class of nilpotent-by-abelian groups which need to be studied in order to answer this question. We show that the nilpotent-by-cyclic groups in this class have exponential isoperimetric inequality and so cannot be automatic.

متن کامل

Filling Inequalities for Nilpotent Groups

We give methods for bounding the higher-order filling functions of a homogeneous nilpotent group and apply them to a family of quadratically presented groups constructed by S. Chen[9]. We find sharp bounds on some higher-order filling invariants of these groups. In particular, we show that groups with arbitrarily large nilpotency class can have euclidean n-dimensional filling volume and give an...

متن کامل

Isoperimetric Functions of Amalgamations of Nilpotent Groups

We consider amalgamations of nitely generated nilpotent groups of class c. We show that doubles satisfy a polynomial isoperimetric inequality of degree 2c. Generalising doubles we introduce non-twisted amalgamations and show that they satisfy a polynomial isoperimetric inequality as well. We give a su cient condition for amalgamations along abelian subgroups to be non-twisted and thereby to sat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric And Functional Analysis

سال: 2003

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-003-0430-y